1) What pH is needed to precipitate Ni(OH)₂ so completely that the Nickel concentration is less than $1.0 \times 10^{-5} M(K_{sp} = 1.6 \times 10^{-14})$ Is it ever possible to precipitate ALL the Nickel? OH=SQRT(1.6E-14/1.0e-5)= 4.0E-05 рОН≈ 4.39 pH=9.60 2) The solubility of $PbCl_2$ is 0.016M at 25C a) What is its $K_{sp}(25^{\circ}C)$ (3pts) = $4x^3 = 4*0.016^3 = 1.64E-05$ b) Would solubility change with temperature and what ADDED information would you need to determine trend/direction? (2pts) YES, Ksp is a Equilibrium Constant that changes with temperature. We would need to know ΔH to determine the direction of the reaction. (If they say ΔG , give them one point) 3) What is the solubility in Molarity and (g/ml) of Ag_2CO_3 at $25^{\circ}C$ ($K_{sp}=8.1\times10^{-12}$) 4x3=Ksp x= 1. 1.27E-04M Molar Mass=276. 2.12E-02g/L 3.5e-5 4) Excess Calcium Phosphate $Ca_3(PO_4)_2$ is placed into a 0.1 L volumetric. ($K_{sp}=2.0x10^{-29}$). How many gram will dissolve. Would you consider calcium phosphate to be very soluble? x = 7.1x10-7 moles/L = 7.1e-8 moles in 0.1 L x 310.182= **2.20229E-05** g **Very Insoluble** 5) The Solubility of the solid salt Ag_2SO_3 in pure water is 1.3×10^{-4} M *Hint(First determine K_{sp}=?)*; WHAT is the solubility in 0.01AgNO₃ Ksp=4x3= 8.788E-12 x*(0.01)^2=Ksp 8.788E-08 M 6) If Strong Acid where added to the following salts what would happen to their solubility | Compound | Solubility Change | |---|---| | Mg ₃ (PO ₄) ₂ | Solubility Change(increase/decrease/minimal change) and WHY? PO4+H+==HPO4 Increase Solubility (Remove PO4 from solution) | | Al(OH) ₃ | OH +H+ == H2O Increase Solubility (Remove OH from solution) | | | | 7) 100 ml of 0.00040 M BaCl₂(soluble) and 300ml of 0.00080M K₂SO₄(soluble) are mixed. (Ksp for BaSO₄ is 1.1x10⁻¹⁰) Determine **Q** and assess **if precipitation** will occur (2pts) 0.1X0.0004 moles of Ba 0.3x 0.0008 moles of SO4 0.00004 moles in 0.4L 0.0001 M 0.0X 0.0000 Moleco of Go 0.00024 r moles in 0.4L 0.0006 M Q= Ba++ SO4= 0.0001 6.00E-08 >> 1.10E-10 Precipitate What would be the FINAL concentration of Barium in solution; <u>SETUP ONLY</u>(3pts) 0.0006 SETUP ONLY: (0.0001-x)*(0.0006-x)= 1.1e-10 Extra Credit: Determine the actual final concentrations. (5pts) χ= 9.95E-05 8) What is the K_{sp} expression for magnesium phosphate, $Mg_3(PO_4)_2$? $K_{sp}=[Mg^{+2}]^3 \ [PO_4^{-3}]^2$ 9) Consider a solution containing 0.181 M lead ions and 0.174 M mercury(II) ions. The K_{sp} for lead sulfide is 3.4×10^{-28} and that for mercury(II) sulfide is 4.0×10^{-53} . Calculate the maximum concentration of sulfide ions that can be in solution **without** precipitating any lead ions. [S=]=3,4E-28/0.181 ## 1.87845E-27 10) Will Mn(OH)₂ precipitate from solution if the pH of a 0.050 M solution of MnCl₂ is adjusted to 8.0 ($K_{sp} = 1.8 \times 10^{-11}$)? AND At what pH(approximately) will a precipitate form? no $$Q = 5 \times 10^{-14} < K_{sp}$$ 0.05*x2 = 1.8e-11 1.89737E-05 4.72184875 **pH=** 9.28 11) A solution is 10 millimolar in each of the metal ions in the following table $(Fe^{+2},Ni^{+2},Pb^{+2},Cu^{+2})$ H₂S gas is bubbled through the solution to attain a [S⁼] concentration of 0.10 M. Predict which of the sulfides precipitate under the given conditions. | _ ~ | | | | | |-----|-----------------------|----------|--|----------------| | FeS | 6.2×10^2 | 1.00E-03 | Q <ksp< th=""><th>Undersaturated</th></ksp<> | Undersaturated | | NiS | 8.0×10^{-1} | | | | | | | 1.00E-03 | Q <ksp< td=""><td>Undersaturated</td></ksp<> | Undersaturated | | PbS | 3.1×10^{-7} | | | | | | · | 1.00E-03 | Q>Ksp | Precipitation | | CuS | 6.1×10^{-16} | | - | | | | | 1.00E-03 | Q>Ksp | Precipitation |